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A non-iterative variational technique for soiving- the acoustic

field equations is applied ro three different boundary condirions, namely,

a fcee surface, an edge and a surface with - riodic disConti-uLi-s. A

perturbation a:proach to surface wave scattering by periodic disconcr.nuities

is also developed and used to obtain both the elastic aMd the piezoelectric

scatter matrcx of a single electrode in a periodic array directly from the

material parameters of the substrate and the electrodes. This scatter

matrix accurately predicts the response of surface wave -flt ters, transdu-

cers and reflectors.
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Chapter 1: Introduction

Over the past decade a new technology has emerged using surface

acoustic waves (SAW) for signal processing applications in the upper VHF

and UHF range. These applications include miniature bandpass filters,

resonators, convolvers, correlators and Fourier transformers [ 1 1. The

chief advantage of acoustic waves over their electromagnetic counterparts

arises from the fact that acoustic velocities in solids are typically

-510 times the velocity of light; the acoustic wavelength at 100 Hz is

about 30 n compared to the electromagnetic wavelength of 3 meters. A

significant miniaturization of signal processing components is thus achieved.

Surface waves have proved particularly useful in this context because their

energy is confined within a wavelength of the surface and is accessible all

along the propagation path. Moreover, unlike most guided waves, surface

waves are non-dispersive.

Most signal processing devices employ surface waves in piezo-

electric anisotropic solids. Periodic arrays of electrodes are fabricated

on the surface to interact with the wave and produce the desired results.

An accurate description of these interactions is essential to proper filter

design. The main objective of this thesis is to develop, from basic field

theory, simple models describing these interactions that can be used by

the device designer.

The following chapters deal with a variety of interesting acous;tic

field problems. Most of these results have already been published and the

puroose of this thesis is to orovide a compact outline of the aporoaches

used. Detailed discusiLons of the techniques and references to the literature

are available in tIe publ*ic itions. A, short tabulation of the contentLs of each



chapter and L!,_ relevant, publicaticiis ar,! listed below:

Chaoter No. Descrinrion i'e re renco

2 A method for obtaining the velocity and fj~ 4~ e2

distributions of surface waves along- the fL_

surface of a single or laminatLed anisotropic,
piezoelectric me~diun..

3 A theoretical and e:--per4_mntaI st-udy of non- 3,4,5,6
dispersiv.e waves alon; -an edige.

4 Amethod for calculating t-he approximate dis-7,
persion curves for surface waves in a mecium
with periodlic surface perturbations.

A simple theory bDased on thme concept am Dower
exchange for describingi the avoluta_,on of a
propagat in:, w,,ave in tlae presence of source
dis tribuc ions .

6 Deriviation of the piezoele2ctric scattering 10
matrix for surface w:aves from an, eleactrode-
in a periodic array.,,

7 Derivation of the mechanical scattering. Tatrm:K 11,12
for surface waves from an elect-rode in a

periodic array.

8 A scatter mnatrix formulation for misltistrip 13
counlers used to couple surface waves from
one track to anothner.

9rndue tructures o -a:',,co n 14
to surface anid line wa7 ves.

10 App 1iczarion of the principle of superpositionur16i.1
for simplified transducer design.

Chapters 2, 3 and 4 describe a non-iterative variational trechnique

for solving the acoustic field equarians as applied to thr ee di fferent,

boundary conditions. The same baqsic techniqua is appliaed in ChanteLr 2 to

descrb, waves confinead ncear a surr:acz and in. Chanite-~ 3o delscribe .wavs

confined ne ,ar -inee Chapter 4 descri bes surf1acea wave, s in ai medium wi-.h1

-neriodi*c dIsco-nt nulits at- 'te surrace. Thi43 t2chuTiru asbe us d Lo
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calculate the dispersion curves for surface waves in a periodic array of

electrodes. However, it is sometimes difficult to get a converged solution

using a reasonable number of terms in the expansion of the field quantities.

An alternative perturbation approach to the problem is described in the

remainder of the thesis.

Chapter 5 describes a simple perturbation theory that is used in

the later chapters to characterize the interaction of surface waves with

a periodic electrode array. This theory describes the generation of surface

4acoustic waves by sources such as charge and stress distributions. The

scattering problem is then treated as a process of generation by sources

induced by the interaction of an unperturbed wave with the discontinuity.

The effect of an electrode in a periodic array on a propagating

acoustic wave is described conveniently in terms of a scatter matrix that

relates the outgoing acoustic waves and the current into the electrode to

the incoming acoustic waves and the electrode voltage (Fig. 6.2, Eq. 6.7).

Chapters 6 and 7 evaluate the piezoelectric and the mechanical parts of

the first two columns (Eq. 6.7) of the scatter matrix respectively, while

Chapters 9 and 10 involve the last column of the scatter matrix. Chapter 8

describes a scatter matrix formulation for multistrip couplers which are

widely used in surface wave devices as beam compressors and track changers.

The scatter matrix elements are deduced from the results of Chapter 6.

4

"4
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Chapter 2: Surface Acoustic e

Surface acoustic waves re non-dispersiv. wave .i aIong the

surface of a solid and decay exponentially in the direction normal to the

surface (Fig. 2.1). The velocity and field distributions for surface waves

are usually obtained using an iterative procqdure to satisfy the boundary

conditions at the interface [ 19 1. This procedure is rather complicated

especially in layered structures [20 1 where boundary conditions have to

b satisfied at several interfaces

This chapter describes a con-itoative tchnique for obtainin

surface wave solutions in anisotropic onizoeectr4c. solids [ 2 j. The

b undary conditions are incorporated into rhe acoustic field equations

using position-dependent material constants. This makes it possible to

account for the boundary conditions directly without iteration even in

laminated media with several interfaces. To find the velocity and field

distributions typically requires the diagonalization of a 30x30 natrix

Twhich takes only a few seconds on a computer.

The coordinate axes xi, X2, x3 are chosen so that the wave

propagates in the x -direction, decays in the 2-direction and is uniform-
12

in the x3-direction. The acoustic field is described by the particle

displacements in the three directions ul, u2 and u3 . In piezoelectric

solids there is an accompanying electrostatic field described by the elec-

trostatic potential, z. The stress, T and the electrical displacement, D

are related to the field quantities u and t by the constir.utive relations:

Ta , b (2.la)
ac a c d dac :d
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Figure 2.1: Sur,:ce waves in a semi-niiemdu



Dc =e - -.cd (2.1b)
Xd d

where C, E! and E are the stiffness, piezoelectric and permittivity

tensors of the medium. The indices a, b, c, d take on the values 1, 2,

3 and su, ,::Lation over repeated subscripts is implied. The field equations

are:

ac -aC 2 U(2.2a)

oIx a

c 0 (2.2b)

C

where : is the mass-density of the solid. The first equation is obtained

by equating the force on a differential element to its mass times its

acceleration and asstuming an exp(j',,t) dependence for all field quantities.

The second equation is Laplace's equation from electrostatics.

Using the conscitutive relations (2.1) to substitute for T and D

in the field equations (2.2) we obtain differential equations relatin7 the

field quantities u and . For a homogeneous medium the material constants

C, e and E are constants so that the differential equations have constant

coefficients. In a laminated medium, the usual procedure is to solve

these equations separately for each of the layers and then look for the

correct wavenumber at which the normal stresses and electrical displacement

are continuous at the interf-ces. For a semi-infinite solid this involves

making the normal stresses zero at the surface.

in the present approach the -n.terial constants are written as

functions of x 2 so as to descri'o the composite medium. For a semi-infi-

nite solid w¢e wri e,

F(x 2 ) = F " (:7) (2.3a)

2 L



7

where F denotes any of the material constants p, C, e or E of the sub-

strate. F is its position-dependent value, e(x2) being the unit step

function. For a layered medium we write,

F(x2) = F O(x2-h) + F'[e(x 2) - e(x2 -h)] (2.3b)

where F is the material constant of the substrate while F' is that of

the layer on top, of thickness h.

Using this method, we have a single differential equation with

variable coefficients for the composite medium. The field equations in-

volve derivatives of the material constants giving rise to delta functions

at the interfaces that take care of the boundary conditions automatically

1211.

To solve this composite differential equation, the field

quantities ua and 0 are expanded in a series of orthogonal functions. We

know that the excitations are wavelike along x1 and decay essentially ex-

ponentially along x2. In view of this, the field quantities are expanded

in a series of Laguerre functions in x2 . The Laguerre functions form a

complete orthonormal set over (0,-) and are defined as,

jm(q)) = exp(- ) P (q)/m (2.4)
2

where Pm is the m th Laguerre polynomial. The presence of the exponen-

tial term is particularly convenient for the decaying field distributions

we are seeking to describe. It is found that five terms in the expansion

provide an adequate description of the field. In the propagation direction

the fields are assumed wavelike with a exp(-jkx1 ) dependence, k being the

wavenumber.



Using Lniis -:aoansior, the i rnta eiu-ALL~is) convert,:d

to an algebrti-c rL,,t rix equation. The matrix eI,_i'eets are dete.-nined froam

integrals £t':ic~ .e po- icion-dep ndent material conscant:s. The un-

knowns -ire hec:aiLncoe7f fi - its of he vari'ous fit!'d -ouanci-l~

The lowest ir nnli of thnc macri:.: . Idthe velocity oft c"e surface

wave an,, ta orsc~igajne c:gvsce field dls trioutioas.

This tecnitue h11 L'S n aclido obtain surtare_-, wave solutis

for various oriencat4Lonjs of ithnium niiobata( < disnpers on curves

have been1r comnutedI for OratciCccl lvrd stut s such as siliCorn

dioxiZe on ihumtna.ceand~ -old on Li-'K3. ig 2.2 shows the
3*

surface wave velIocit:y j-ains: 'I'i where k is the wa.'enumber -,d h isth

thickness cE the -ol-d la-yer. This is in agreemenet- with--' results rena:orte-d

earlier singierative tachaiques 21.The details have been described

in refs. [2] and [71.

UI
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Chapter 3: Line Acoustic Waves

The g-uiding, of surface- acoustic waves along' f ree surtace involves

only one boundary in contrast tL) m-.ost waveguiding structures Whicn require

two boundaries. This mtakes surface waves non-dispersi-ve since tne gu.iding

structur-e nas no characteristic dimension.

The guid4ng- action of the surface is explained! -piaiitatively in

this way. The particles near the! surface have greater fPreedomc Of Movement

than those within t'he bulk of the solid. This makes the.a surface apoc ar

less "stiff" than the bulk so that the wavefr-ont :,ioves s lower near ':he

surface. Since waves I i. gleneral -end to be guidled along regions Of !lower

velocity t:he surfrace acts as a guide.

This view o' surface guidi..g leads u-s to ex-Dec- th7at there will

be a fEurthe-r loeigof wave velocity near an ed,- forrned by two stress-

* tree sufcs These waves, called line acoustic waves, are non-disoersi e

[.too since an edg-,e has no characteristic dimensions. In addition linae

acoustic waves are diffractionless and the total energy remains confined

within a square wavelength frmthe edge.

The theoretical analysis of- surface waves describtd in chlapte-r

2 is readily etnedto line waves by using a double series of Lagulerce

functions to exoand the decaying fiel~d distributions along both xarzdx

3 1. Using this analysis the field distribution for a z-propagatin- line

wave in lithim niobate was calculated. A computer plot is shown in Fig.

3.1. 1,t is seen that the wave motion is flexural. The particle nMotior

is antiasvmxor~etrcc alno-ut a central1 plane; when the lhorizontal fa -ce :-ro-ves

into the solid, the verticnl face moves out of the so lid thlus making"

room for each o:'her. A,;:?~ be e--::.ected, this is the mod with h
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lowest velocit-y; symnetric mJodes where2 the two iEc~s move in and out in

synichronism have higher velDcitie*-s arnd in most caseZs are noc g uided mode..

Line waves are characterized by high putnnr densit-y, zero di7f-

fraction and nondispersivc rrgto which mak'1e tE-n suitable for signa_

processing applications. However, for practical deie plcations we

need edges that do not have imner fctions any larg.er than a fraction orL a

wavelength; in the tT-F range this meanis that c'hios and striations atl the

edge should be_ smaller zhan a Ticrcn.

W-2 w-t--e able to obcaini~ edge zs sutbefor lossless non-disneLrsi-v2

prop)agyation of lin*ze wav,,es uD to -at loa-sL 229 MT-z (~- 6 ~la y cleavi".

commercial lithium naoata crystals with-' top polished surfaces 'L!*The

caag plane ini T ThOD (012) lies along the x-axis at an angle of J-7.2-"

to the -ap-'is [231 . 7s ing- di~ferant cuts of LiN'bo as the st:arting
3

material, 2ogst d ifern interior angles ar2 obtained as s~ni

Fig. 3.2.

* ~~~~For our exetinswe used a wedge with an interi:or CgC

84.9' obtaiit-d by cleavincg 127.86' rotated Y-cut -iNbZO <i- 3.3). S icE!

the cleava-ct piante is crystallograph callly detcrmined, tl"a a'_e'ohte

wedge- is known c- *Iccu rqtelv. The theoreticall-v calrculain noric

displacement_-,rs and1 31ectr_ call :DotntLals along the ton sur.7ace aro s*-ewn

in .Li for: a 100 niH line wave along this wedge.

Line wav,.es -it A0 3\qi were exci t-ed using In itriialtrans -

ducetr with1, 4' elcLrode pai rs and- a uniAform overlap of- 1. K The

snhear natcedis7nl;.acment'_ was mcisurz:d -alon- theo ton- surface of th'e

we dt using- lasr pr:oe r~ .[) e I:ei~nel C2ue auss

groocd aren Wit h the tertclpril ipae~n Lil ~.3;
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The measured line wave velocity was 3500 m/sec. (+ 1%), which compares well

with the theoretical value of 3488 m/sec.

A 220 MHz line wave device t5 I was built using single phase

transducers (Fig. 3.6). These transducers have electrodes X/2 wide as com-

pared to the X/8 wide electrodes required for reflection-free interdigital

transducers. This reduces the resolution requirements by a factor of 4 so

that higher frequency devices are fabricated with the same photolithographic

capability. Fig. 3.7 shows the frequency response of the device which has

the ideal (Sinx/x) shape anticipated for a non-dispersive delay line with

unweighted transducers. No significant losses could be detected along a

1 cm. propagation path.

One of the drawbacks of the single phase transducer is its

poorer coupling compared to the interdigital transducer. A sawtooth trans-

ducer (Fig. 3.8) combining some of the features of the interdigital and the

single phase transducer, provides better coupling [6 1. A discussion of

the coupling efficiency of various types of transducers is contained in

chapter 9.
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Chapter 4: SAW in Periodic Laminated Media

In chapter 2 an analysis of surface waves in laminated media was

described using an orthonormal series of Laguerre functions to express field

-distributions in the direction perpendicular to the surface. However, the

medium was assumed uniform in the propagation direction xl, so that the field

quantities were wavelike in x I with a single Fourier component exp(-jkxl).

We have extended this technique to include periodic variations of the material

constants in the propagation direction (Fig. 4.1) by using Fourier series to

express field distributions as required by Floquet's theorem:

f(x1 x Z f m m(x 2 ) exp[-j(k+n x (4.1)fx'2) =m,n Tan "

where m(x 2 ) is the Laguerre function

r p = length of one period

and f are the expansion coefficients for the field quantity f.
mn

As before, using position-dependent material constants to describe the

composite media we can take care of the complex boundary conditions in this

problem. The differential equations are then converted to matrix equations

and the phase velocity for a given wavenumber is obtained from the lowest

matrix eigenvalue [ 7].

The chief difficulty of this method lies in the fact that many

practical problems require a large number of Fourier terms for an accurate

description of the fields. This makes the size of the final matrix un-

wieldy for the numerical computation of eigenvalues. Perhaps a different

basis set for expressing field distributions in the propagation direction

would be more appropriate. However, this has not been investigated.
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The technique was applied to various practical structures with

considerable success. Fig. 4.2 shows the velocity for different wave-

numbers, k, obtained for a grating of thin electrodes on Y-Z LiNbO . The

wavenumber is normalized to 5 (= 2rr/p) where p is the grating period. At

k = .50° there is a stopband as anticipated. The velocity is discontinous

at this point. The potential and charge distributions along the surface

are shown in Fig. 4.3 corresponding to the two values of velocity. The
E4

flat potentialregions correspond to the regions covered by electrodes.

Between the electrodes the charge is expected to be zero. As can be seen

from the figures, this boundary condition is only approximately satisfied.

This is because only a finite number of Fourier terms is used. The present

analysis is thus a variational analysis that minimizes the velocity eigen-

value for an assumed expansion of field quantities in orthogonal functions.

The method has also been applied to grooved arrays and thick

electrodes. These results are described in [8 ]. This technique provides

a generally applicable scheme for calculating approximate dispersion rela-

tions for laminated piezoelectric structures with periodic boundaries.
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Chapter : A Simple Perturbation Theory for Propagacin, Waves

A commonly occurring problem in wave theory is to describc the

changing characteristics of a propagating wave due to a distribution o:

sources in the mediuni. This source distribution may be due to external

generators, as in tcansducers; or it may be induced by the incident wave

due to a change in the material properties, as in reflectors. in most

practical cases the perturbation of the wave is small over a wavelength,

and no essential change takes place in the toelationship betweeni the dif-

ferent field components comprising the mode. Under these conditions en

a complicated couDled mode like a aaylei~-h wave is described by a sin-le

comple2, amplitude, A. An unnerturbed wave travelling in the ::direction

has a constant amoitude A; in the presence of sources the wave is por-

turbed and A is a slowly varying function of z described by a simple

differential equation (Fig. 5.1):

I dA ! dP

A dz 2P dza

where (I) dP is the power (active and/or reactive) flowing from the source

into the wave in a distance dz along the propagation path.

and (2) P is the time-averaged power flow of the prooagating wave.a

This equation follows quite easily for real dP from th-e relation

Pa -- ' A 2 and the conservation of power. For imaginary (or reactive) dP

the relation is not so obvious but can be proved by considering the instan-

taneous (r-th aor than time-averaged) power flow.

Equation (5.l is simple in appearance but is remarkably versatile

in solving tho t-.oe of perturbation problems we have been discussing,. Its

applcabi rv _mes fa om the simple case of a plane wave in a transmiss ion

line :o th. Dr j *-_r7'icated case of guided acoustic waves in piezoelectric
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of driving sou,'ces
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media, as we propose to show with tho folloing eamples. The rtsul  s

presented here are not new, but they are all derived from the same equation

(5.1), thus providing a simple unified physical picture for a wide variety

of wave perturbation phenomena. This makes it straightfor-ard to ex-

tend the results to new problems involvig waves with more complicated

fields.

1. A classical traosmission line:

We start with a trivial example for which exact solutions are

available from well-known conventional technicues and show how at.

(5.1) predicts the same results. 'e consider a transmission line modeled

as a distributed circuit wiith a series impedance, Z and a shunt admit-

tance, Y. The characteristic impedance, Z and the pronagatioa co.,stant,o

v are related to Z and Y by,
'0

v = ZY(5.2b)
10

Now if we change the shunt admittance by an amount "Y, the propagation

constant will chan:ge from o to o' AN(.

Yo+ by .. z ( t Y)

Y (1 + LY) if AY << y0 T

so that,

Yo (5.3)
2Y

provided -Y is much l.ss than Y; that is, if the perturbation is smal.

Now we derive ( usine Z',. '5 .-1 The ditional admittance

LY causes a :shunt: current, I per unit length givon by
5
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I = V • AY
s

where V is the potential of an unperturbed wave. This shunt current Is

may be considered an induced "source" and the power flow into the wave

from this source in a distance dz is written as,

dP =-V I dz2 s

S- 1 Ly dz (5.4)
2

Using dP from (5.4) in (5.1),

I dA IV 21 - ___

A dz 4P

Z
0 AY (5.5)

2

Integrating (5.5), we have,

A(z) = A exp(-Ayz) (5.6)

where, A is a constant

and, Z6nd -Y = -0 • AY (5.7)
2

The results in Eqs. (5.3) and (5.7) are seen to be equivalent, noting

from Eq. (5.2) that Z0 Y = Y0 . The amplitude A used here can be any

of the field quantities (voltage or current) with the unperturbed phase

factor exp(-yoz) removed.

2. Plane bulk acoustic waves in a conducting medium:

We now go on to a more complicated example. Let us consider a

plane bulk acoustic wave propagating in an insulating solid with a piezo-

electrically stiffened velocity v . The wave is accompanied by a traveling

electrical potential Oa" We wish to find the attenuation and the change in

velocity of this wave if the solid has a finite conductivity c and a dc field
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is imoressed 1-i ft the carriers in- Lte propaga?-ion directioil. -.:-Ic t

solutions for this situation are available [251 and once again c -cn

compare our results from Eq. (5.1) with weil-known results.

In a conduiczin.- medium the pi'-Zeecftric potent.ia'l g ue to

the acoustic waecauses the charges to bunch, formaing a traveling- w..ave

charge distribution p. This charg-e distrib)ution produsces an electrost-atic

potenial, that isobtainied from 'loisson s enuation.

eo~

where "Zs thie p ermttot o--the medlium and 3 is th uor ur.beC var-

number DF Th.-e ;acoustac. wavef. For small perr-urb-Ion we- may ignore h

di fference between ', and the a-erturbed veunrS and re ae : a c c

-]0~ . S 'ice wie are consideri*ng :olane wave6, w.-e have set ?V-/x= 0/=.
0

Let 3 be te current- -nor uit, area due -o the traveing chag.~ s

tribution. This current is consid'ered3 t-h source f r om. wh ic IIh he a CouIsti c

wave absorbs a power, dP, per unit area given by,

d?= . S (5.9)
2 ~a I

From currcnrt continuit-y,

= (5. P~a)

or, j = v (3.l0b)

v = beaingth acoustic waver, velocity. Using (5.l0a)
a .

in (5.9), wehave,

d-P Ja
d z = -2

so that, from" F-:. '
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1 dA _a (jwp) (5.12)
A dz 4Pa

where P is the power flow per unit area of the acoustic wave. In thisa

example the wave in the insulating solid was assumed the unperturbed mode.

The acoustic wave thus has no associated charge pa- However, in general

we should add a term (jWPa) Oe to the numerator in (5.12).

We now need the charge distribution p in terms of Ca to complete

the analysis. This is readily done by writing J from the material constants

and using Eq. (5.10b).
ArJ = VaP = j o(0 + 0e )  + Vd + JoD (5.13)

a o a e~ +dp + jDp (.3

where, (1) a is the conductivity of the medium

(2) D is the diffusion constant of the carriers

(3) vd is the drift velocity of the carriers in the propagation

direction due to an external dc field.

Here we have written only the linear component of current having

exp(-j oz) dependence. The non-linear acoustoelectric component involving
Y0

the product of @ and p is neglected. Using Eq. (5.8), we obtain

from (5.13), 2-a
o (5.14)i -2 %--C+ )

where, y = 1- vd/Va (drift parameter) (5.15a)

Wc= a/E (conductivity relaxation frequency) (5.15b)

2Wd= v D (diffusion frequency) (5.15c)

Using (5.14) in (5.12),
* 2

IdA a~a o
dz 4 Pa +
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so that, A= A exp[-(e + jAL)z]0

where
A3 aa 0)---L + j 5. i5)0 0 + J o 4 P a 

0

a + c +

Here cz is the attenuation constant and A is the change in tha wai'enumb .

Now, for a perfectly conducting medium with no drift field, we can obtain

I the changeinwavenumber L3 from (5.16):
sc

4.4P 0 a (5.17)

Using (5.17) in (5.16),

~ + ~ sc cI)

+jA13 (518

o o )c

This is seen to be the same result as in [25' noti:.g Lha:_. A' /3 is ecuai
sc '0

to half the electromechanical coupling constant.

3. Surface acoustic waves in the presence of dist:ribut:ed sources:

Now we come to an example for which no exact solutions are

available, namely The propagation of a surface wave in :ho presenc Of:

stress and charge distributions on the surface and distributed volume

forces and charges within the bulk.

Consider an unperturbed surface wave propagating with a velocity

c s along the surface of a semi-infinite substrate with a perfect open.

circuit ( = 0) above. The propagation is in the z-direction and the wave

is assumed unifomn in the x-direction. Now if we assume stress distriu-

tions T (z) (i = :,y,z') and an electrical displacement -)'(z) on the surface

(y = 0) then the power d flowing into tie surface w-ive per unit b
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width in a distance dz is given by,

dP s = A dz v. (y=0) T[ + 0*y=0) WOD (5.19)

where A is the amplitude of the surface wave and v. (y=0), (y=0) repre-

sent the particle velocity and electrical potential at the surface of a

unit amplitude unperturbed surface wave. The signs of the terms in (5.19)

correspond to the y-direction being into the surface.

If there is a body force density F' and a charge density p'

within the volume then there is an additional power flow dP into thev

surface wave given by,

CO

dP = A dz dy (5.20)
Li v. F. (P

The total power flow into the wave is,

dP = dP + dP (5.21)s v

Now, from Eq. (5.1) we have,

IdA 1 dP""/~ " - = 2-IpL d (5.22a)

n

where P is the power carried by a unit amplitude surface wave, so thatn

the power in a surface wave of amplitude A is given by

P a= A12 P n (5.22b)

Using (5.19), (5.20) and (5.21) in (5.22a),

p A= f + f (5.23)
Pn dz= s v

where,

f = - v*(y=O) T' + t*(y=0) jwD (5.24a)
s i=xy,z i iy y

L1
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V dy _i Y,- w z - 5. 24b "

ciere -pe rimed quantittes rer )csurces whil,! unprined cjuanti Las are

the fields due to the unoerturbil Aae.s rioced in conmecton with bulk

waves, the unperturbed -ode- is assun..ed not to have any suresses T. or

electrical displacementc D a: the surface-; nor any Lcrces B.or charges
y

within tnhe voluoIe. Otherwise, !the corresponding powe;,-r flow ter-,,s (such

*as juD (y=0);., being the source Dotential) hnave to be ad-ded to
V

and

(5 .23) i s rall t he well-k nown no r7al-.ode ec,'orttcn rr

surface waves chtat was deriv.ed fr om t he re-aci-'p ruc it ther em ~2~.I s

the s :.atn: :Dam: for numerous problems involvin-g surfac= w.,ave transo uce-rs,

1-2c ~tor s nnd annlis -.- 7t isitrsig to note thatit- fo ils rr

zhe trval- looking, relatioan 35. I-). Thie as)orooriace ecuacion L),- -lure

licared 2 ds as in g-uided- surf-,:-ace waveas can a'-so be r.ri cn on by

msn)ectin.

To summar-a zc:, we have shown ta the pe rturba ton o f any wa-ve 'Dy

Dnrse r inducedl sourceos is desc-.bed by th simple reLton h I 5 tatoG

mdc n .E.1-j Thfe a,) 1L ton- of ths DrinciiL,!is ill Iust1r ated wi th th'n

%2::am:Lo-i.S--the elass ical crnmssinlne, the propa- ,ation of n-lane acoust~c

wave mococu :..o ea _-imth geners tion of SA-- by impressedsrse

-and c h .-rL s . e 1 ie ve that t h s p rov Ld es- a s im pl1e un i fl ied pic tu re ot

wave -f,) '-- io hat w ill oro)v us--ul in t-he tre2at me nt o f newer and

mo re- cc,-.,) ato. I rob 1ems.
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Chapter 6: Piezoelectric Scatter Matrix for Thin Conductive Gratings

Periodic arrays of thin metallic electrodes are widely used in

surface wave devices for constructing transducers and reflectors. In

reflectors the electrodes are either left unconnected or shorted together

to form a periodic grating so that the structure is truly periodic. In

transducers, however, the electrodes are connected to external voltage

sources and the particular sequence and phasing of electrode voltages

depends on the desired spectral response [27]. This makes the structure

electrically non-periodic. The analysis to be described in this chapter

assumes electrical periodicity and is directly applicable to reflectors

and multistrip couplers. A modification is required in its application

to transducers which is presently being developed [28].

The array of electrodes at the surface perturbs the boundary

conditions so that both stress and charge distributions are induced at

the surface. The basic problem is to determine these induced source dis-

tributionh due to an incident surface wave; the perturbation theory developed

in the last chapter (Eq. 5.23) is then used to determine the phase change

of the incident wave and the generated reflected wave. The assumption,

of course, is that the perturbation is small over a wavelength which

is true in almost all useful applications.

In this chapter we will consider only piezoelectric scattering

due to the induced charge distribution; the mechanical scattering due to

the induced stress distribution is discussed separately in the next chapter.

In strong piezoelectric materials like LiNbO3 the scattering from thin

electrodes is predominantly due to induced charges; but in weak piezoelec-

tric materials like quartz the mechanical scattering is more important.
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We consider auLucident surface twave from the left on a periodic

array of electrodes each of which is connected to ground through an i :ped-

ance Z (Fig. 6.1). The elec-rical potential at the surface associated

with he wave i en as a measure of its amplitude,

Ds -j 0 za (6. l
S

where .c is the unperturhed wavenumber. c+ is the amplitude (complex) of

the wave enteriu an electrode from :he left. The wave leaving; to the rihz

* has its amlitude changed by i. •n addition a reflected wave of
,0 is generated Lo lhe lft. and az2 b~ie!

- +

5.23 over o n e ot oi

o D (z) e .2a)

2 p/2 y

_ D (z) e - a (6.2b)
-_ 2 -p/2 Y

where, Z = +-o 2P
a

P being the power carried by a surface acoustic wave with a surface
a

potential of

To determine Dy (z), we assume that an electrostat:ic field described

by Poisson's equation is superposed on the piezoelectric field. The potential

due to this field is written in a Fourier series from Floquet's theorem

for periodic media:
e-lZ (n),Y e j ( n)

n e3

where, =(n) - n. -0 p
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The exponential decay along y follows from Laplace'o, equation for charge-

free media.

The total electrical potential at the surface is given by,

-j z
T(z) = 'e o + .$e(y 0, z) (6.4)

The tangential electric field at the surface is obtained from the deriva-

tive of the potential:

E -j z - (n)
j3 z e o + 3() e Z (6.5a)

n-0

The electros atic part of the field gives rise to a nornal electric dis-

placement D (z) at the surface that is written from Laolace's equation:
Dy(Z = (p- 3( )  -J(n)

D (Z) = (-E p j 1 n e' (6.5b)

where is the effective permittivity of the substrate and f is the
p 0

permittivizy of the medium above the surface. The problem now is to

determine the D nIS such that (Fig. 6.1)

a
E z(Z) = 0 IzI <a2 (6.6a)

D(Z) = 0 2 < 'z I < p/2 (6.6b)

This is done analytically in 1li01 using the properties of tce Legendre

polynomial. Once the induced charges in tie sriqs 0) is determined
y

, and ,,, are readily obtained from 7.:. 6 2. \ (3x3) matrix

relating the fields at the two acoustic and one e._:ctrical rtorts (Fig.

6.2) is obtained analytically:

+ A _ Al1 A12  A-3  ) s

L3? 32 33
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Fig. 6.2 is labeled in terms of dimensionless coordinates s and in

place of 3 and z. In the above discussion we assumed a wave, 8 incident
0

from the left. The second coltmn of the A-matrix corresponding to a wave,

s incident from the right is obtained by symmetry.

The (2x2) scatter matrix, S, relating zhe two acous-ic ports is

easily obtained from the A-matrix by setting I ViZ where Z is the ex-

ternal load at each strip. Unconnected strips are described by Z

while shorted s:rips are described by Z = 0.

Thus a complete scatter matrix describin'c th piezoeiectric

scattering by a periodic array of electrodes is obtained analytically at

all frequencies. The results have been applied to determine the refleczion

coefficient per strip at different stopbands and for different m etaii-

zation ratios (s a/p). The details are described in I

I!

Ii
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Chapter 7: Mechanical Scattering from Periodic Arrays

In this chapter we consider the scattering due to a thin strip

overlay of height h (<< wavelength) on the surface (Fig. 7.1a). An

incident Rayleigh wave along a free surface induces normal and tangential

stresses Ts  Ts  Ts  (Fig. 7.1b) at the interface between the strip and
xy yy' zy

the surface. The basic problem is to determine these stresses in terms

of the particle velocities of the incident wave; th,. stresses can then be

used in the perturbation Eq. (5.23) to yield the phase shift of the

incident wave and the reflected wave.

To a first approximation, we may assume that the strip floats

on the wave so that the entire strip moves with the same particle

velocities as the unperturbed surface. In this case the problem amounts

to finding the forces that have to be exerted to the strip by the inter-

face in order to move it with the same particle velocities vx, v, v as
x y z

the unperturbed surface. This is done by considering the forces acting

on a differential element dxdz of the strip of height h. From the x-

directed forces (Fig. 7.2a),

6T"

Ts = jwp'h -h. xz(7.a)
xy x h z

From the y-directed forces (Fig. 7.2b),

TS =jwp'h v - h . -ayz (7.1b)
yy y 6

From the z-directed forces (Fig. 7.2c),

T s =jwo'h v -h zz (7.1c)

zy z h z

where p" is the mass-density of the strip.

Eqs. (7.1) give the interface stresses in terms of the

surface wave particle velocity provided we can express T', T' and T' inxz' yz zz
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dz-4 Traction Free
dx Top Surface

/ Strip-Substrate
- Interface

(T~+ -j--dz) hdx z

T* hdx

a4T,

TzzF; dxdzd

Tzdzdx

*(C) K_"

Figure 7.2: First order forces acting on a differential
element of the strip in
(a) x-direction
(b) y-dilection
(c) z-direction
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terms of v, v , V . This is done approximately from the plane strain

equations to yield [301,

T 1 - v (7.2a)
xz C x

s

T4= - -- ' (7.2b)
zz C X 2 4,

T = 0 (7.2c)
yz

where C is the surface wave velocity and -, are the Lame constants
S

4 of the strip material. For anisotroDic s-_ri-s, similar equations are

derived but are more complicated.

So far we have not considered the effect of the finite strip

width. At the edges of the strip (z = - a/2) the situation changes some-

what from that depicted in the force diagrams of Fig. 7.2. There is no

strip material on one side to exert the stresses T T" and I' on the
xz yz zz

z- face of the strip. So in order to keep the strip vibrating with the

same particle velocities, the substrate has to exert extra forces at

the edges to make up for the missing material to the left at z = - a/2

and to the right at z = - a/2.

The interface stresses thus have the snatial distributicn

shown in Fig. 7.3. The stresses are uniform under the strip with delta

functions at the two edges. In the figure a ' and CI'z

Using these stress distributicns the reflection coefficients

predicted for several practical cases agree well w-ith measured values. The

details are described in Il!]. It is found, however, that this does not

predict the slight iowering of phase velocity from the unperturbed value

that is e _aerimentaLly observed. The physical reason for this velocity

.
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Figure 7.3: Spatial distribution of
(a) x-directed interface stresses
(b) y-directed interface stresses
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lowerirng is that, duo to the interface stresse, ,he sus Erat= is di torLed

som' e%'h_-t, and the assumption of the strips floating on the wave made here

is not strictly true. This distortion represents a rel.:ation of the

syste!-, causing a Iowering in velocity. >athematicaily, this is taken

iito account by assuming the xcitation of evanescznt modes that store

ener gy.

The first-order stress shown in Fig. 7.3 induces particle dis-

placemencs with spatial harmonics separa:ed from the unperturbed wave-

number by an integer multiole of o-'here o is the period (Floquecs

Theorem) of the array. These fields store energy and their effect on

the incident wave velocity is obtained from '5.23) using the second-order

stress generated by the induced :article displacement field. A complete

analysis of this stored energy effect is described 4n [121; the phase

velocity and reflection are corr-ctl y predicted using this analysis.

The analysis described in this chanter yields the mechanicalI

part of the scatter matrix of an electrode in a periodic array. These

are added to the A A11 , A'1 , A, obtained in chapter 6 (Eq. 6.7 fAr
1'12' >'~

the piezoelectric part of the scartering. The other matrix elements are,

howeve2r, unchanged by mechanical effects.
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Chapter 8: Multistrip Couplers

A multistrip coupler (MSC) is a periodic array of electrodes

that is used to couple from one surface wave track to another (Fig. 8.1).

Each strip of the MSC samples the potential of the incoming acoustic wave

and applies it to all the tracks generating acoustic waves in each track.

Because of the traveling wave nature of the excitation, the generated waves

are unidirectional; reverse waves may be ignored outside the stopbands.

MSC's are widely used in surface wave technology as track-changers, beam

4compressors and couplers.

In this chapter we will derive the (MxM) scatter matrix of a

single strip in a MSC that relates the incoming and outgoing acoustic waves

in the M tracks (Fig. 8.2)

M
A An a Bn n M• i= k= I ik Bk , i =1I, M (8.1)
1. L ik k

ntt thwhere Bn is the incoming wave amplitude in the k track at the n strip

n ith th
and A is the outgoing wave amplitude in the i track at the n strip.

i

We wish to determine bik. The superscript n denoting strip number is

dropped for convenience. The scatter matrix of successive strips can

then be cascaded to obtain the scattering characteristics of the coupler

as a whole.

Neglecting backward waves, we may write in terms of the A-

matrix in chapter 6,

A = A Bi + A V (8.2a)
1 A2 1 Bi 2 3 V

i i= 1, M

I. = )B +AM V (8.2b)
i 31 i 33
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where I. is the current into the i t h track, V is the common voltage of
I

all the tracks, and A2 represents the A-matrix elements of the i track.

If a load YL is connected externally to each strip then,

M

L I i + VYL = 0 (8.3)

Using I. from (3.2b) in (8.3),

M M

A B. + V. i + A
3i 1+ L 33 2

M

il

IM
where Y= YL+ \ A(i) (8.4b)

L L 33
i = 1

Using (3.La) in (3.2a),
M

Ai = AM . 23 A/ A3 1  k (8.5)
Y

Comparing .with (3.1) w-- have the scatter matrix hik

ik 21 ik 23 31
Y

where 5 = I i= k

6 = 0 i k.

The first term in (8.6) denotes the direct propagation while the second

term denotes coupling from other tracks. An incident wave i:i track k

produces a current oroportional to A3) The strip volta-e 4s related to

31 - ltjt

the current by the total strip admittance y. The strip voltage is then ox oortiona!

(k) Mi ktoA 3 1 /Y which generates a wave in track i proportional to A. A " " i .

...... ... ...... ... .........,mI IIll l l III .....
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A simple circuit model for the scatter matrix is described in (13].

The scatter matrix method is applicable to the analysis of non-uniform

couplers with slowly varying characteristics; such couplers are not amen-

able to analysis by conventional techniques. Details of this technique

with examples are described in Reference [13].

41
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Chapter 9: . Unified Theory of Transducers

In the last three chapters we have discussed the scatter matri:

for a single strip in a periodic array. As mentioned earlier, this formu-

lation is directly applicable to reflectors and multistrip couplers; but

modifications are necessary to apply it to transducers which are usually

not electrically periodic. A complete scatter matrix description for

transducers is presently being developed .

The scatter matrix approach to transducers, though accurate,

requires numerical implementation thus lending little physical insight.

A less accurate approach known as the "weak coupling appro:ximation" has

the advantage of yieldinig simple results that are easily interpreted

physically. The acoustic waves generated by the transducer induce charges

in the electrodes which in turn regenerate acoustic w-aves. This regene-

ration is neglected in the weak-coupling approximation. With this approx-

imation, -he charge distribution in the array is calculated from eleczro-

statics alone. The problem then divides into two steps:

(1) The charge distribution, on the electrodes is determined from

the electrostatic equation.

(2) The calculated charge distribution is used in Et. (5.23)

to determine the generated acoustic waves.

This chapter describes the second step in terms of an aribtrary charge dis-

tribution. The next chaoter discusses the first step for SAW interdigital

transducers.

In this chapter we will discuss the radiation conductance, capa-

citance and Q of the generalized transducer depicted in Fig. 9.1. These

results are universal and can be applied to the excitation of any acoustic

mode (SAW or l\.); certain unifying features common to all transducers are
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y

~Transducer
V OT (yZ)

~Vp T ( y ' Z )

Piezoelectric, Substrate

Figure 9.1: A generalized transducer producing a potential

distribution VO
T and a charge distribution VPT

proportional to the terminal voltage V
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revealed through this general formulation. An external generator impreses

an alternating voltage V at a frequency w across the terminals of the trans-

ducer which is an interconnected pattern of electrodes that produces a

potential distribution on the surface given by VT(y,z). The function

ST(y,z) is characteristic of the transducer and has to be determined from

the electrostatic equations as discussed earlier. Corresponding to this

potential dis tribution we have a charge distribution per unit area in the

I T ,
transducer ',p (y,z). The peak electrostatic energy, W stored in the

transducer is given by,

W T =V2 ,T T

W -- ,TT (9.1a)2

T 0T

where \4 , p dydz '-I- (y,z) p (y,z) (9.lb)

over the

transducer
1 2

Since the peak energy in a capacitor is given by -CV the capacitance of
2

T

CT = rT (9.2)

Now, let us obtain the radiation conductance of the transducers

due to the generation of any particular acoustic mode. Suppose this mode

Lhas an electrical potential at the surface given by AZ (y ,z) where A is

the amplitude of the wave. The total power carried by the mode is

written as IAI2.PL. We then have from equation (5.23),

dA * T
dA A V dv Z (,z) jw p (y,z)

- _(9.3)
4.jAj2PL

If we assume the wave grows from zero amplitude to a finite amplitude

A over the length of the transducer, then A0 is obtained by i't,,rati,

(9.3):
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A = JWV (LIPT) (9.4)
= 4PL

where L OLIoT) is defined analogous to (9.1b). The radiated acoustic

power, Pa, is then written as,

Pa= IA0L 2 "PL22

= 1 ( • L1PT)1 2  
(9.5)

This is the power coupled to one mode in one direction only. There will,

in general, be some power coupled to the wave in the other direction, as

well as to other modes. The same expression (9.5) will hold with the

appropriate OL and PL"

Since the power dissipated in a conductance G is given by
L

G V we nay write from (9.5),
2 L

2
GL = L  (1LPI1  (9.6)

L PL

Here GL represents the power radiated into one mode in one direction

only. The expression GL may be written in terms of the fractional changes

in velocity of the acoustic mode caused by completely shorting the surface

L
with a conducting layer. Suppose that a charge -A.p (y,z) per unit area

is induced on the conducting layer by the acoustic wave of amplitude A.

Then we can show from (5.23) that,

I-v 4 -L -T dy 0 L*(yZ) pL(y,z) (9.7)

where 50 is the unperturbed wavenumber of the acoustic mode. Now for a

travelling wave 0 (y,z) depends on z through an exponential phase factor

exp(-j 0z). The charge induced on a uniform conducting sheet also has the

same phase factor so that L* (y,z)p L(y,z) is independent of z. We can then
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write,
L* L I L,

dy o (y,z) PL (y,z) L LL (9.8)

where L is the length of the transducer and (5LIPL) is defined as in

(9.lb).

Using (9.7) and (9.8) the radiation conductance is written as,

~~I\._ I~ KLT)
G LV <L) P (9.9)

L 2 IvL 0 )  LPL\

We now have the radiation conductance and capacitance of the generalized

transducer. It will be noted here that if more than one acoustic mode is

coupled to the transducer then L is computed similarly for each mode all

the conductances are placed La parallel. Assuming only one mode we have

for Q, T)LN

L1 T
aC T / \ -, .( l "

GL  
p.V L) 0 Li T 12

T ( }T, /LI L\

2 L " " (9.10)

T92 N /LPT)I2

2 I_ I
where x

and N is number of wavelengths in the transducer = L

The other terms are redefined here for convenience:

(1) = 'J dydz Z (y,z) o(y,z)

over the
transducer

(2) :T(y,z) and OT(y,z) are the potential and charge distributions

produced by the transducer with unit voltage across its terminals.

L
(3) 2L(y,z) is the potential distribution of a unit amplitude acoustic

mode along a free surface.

L-
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(4) -p L(y,z) is the induced charge due to a unit amplitude acoustic

mode when the surface is shorted with a thin conductor. The

minus sign is included in this definition because we may consider

this charge as producing an electrostatic potential that exactly

L Lcancels the acoustic potential @L(y,z). Clearly then +p is re-

L T. T
lated to 0 in the same way as p is related to 0T, namely

through the Poisson's equation.

T T L L
In factT and p or and p are related through a convolution

4.' product:

p(y,z) = C(y,z) * (y,z) (9.11a)

where C(y,z) represents the charge distribution due to a delta function

of potential at y=0, z=O. Clearly the Fourier transforms are related by:

P(ky k z  = (ky k z  . (k yk z  (9.11b)

y z y z y z

where the bars denote Fourier transforms and k y,k z are the spatial fre-

quencies corresponding to y and z.

Now we can see from equation (9.10) that if LT = that is,

if the transducer produces a potential distribution that exactly matches

that due to the acoustic mode, then,

2
2

We can readily show that this is really the minimum possible Q and repre-

sents an optimally coupled transducer so that the factor

Qmin go LPT )1 2
F = - -1- (9.12)

may be taken as a measure of the efficiency of the transducer structure.

To see that F < I for any T 0 L we note that the integration of space



variables over y,z can be replaced by an integration of the Fourier trans-

forms over k, k , so that using (9.11b),

F C <L )2 (9.13a)

_;T -T <L{ L
y z ) - C

where , ) now denotes integration over ky, k and the bars denote resoec-
Sz

tive Fourier transforms. The two terms in the denominator are the norms

T -Lof T and L with a weiht function C while the numerator is the inner

product of L and _k with a weight unction C. Clearly V is maximum when

-L -T
the inner product is maximum, that is, when ; = ! . This is, of course,

what one would expect intuitively. We note here that F can be written in

terms of charges as well:

F - - (9.13b)
K CjT -L c~\ :--apT) ,Pl ,fLi

The quantity F is a good figure of merit for a transducer exciting

a certain acoustic mode. As an illustration let us evaluate it for a SAW

interdigitaL transducer with alternating polarities. Since the SAW is uni-

form along y, we may neglect the integrations over y (or k ). Also we note
y

that for fields uniform along y,

C(ky: 0, k ) - p (9.14)
y z p' z

where " is the effective permittivity of the substrate. This is shownp

readily from Poisson's equation.

Suppose the transducer potential distribution is periodic with a

Fourier series representation to the form:

-T jn oz(z) = n=- n e- 0(9.150
n

= 
- n

where 30 is equal to the wavenumner oiF th- acoustic mode being excite.-

Li
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0L(z) = 0'(0) e - j 'O z  (9.16)

Using (9.14), (9.15) and 9.16) we obtain CT from (9.2), Ga from (9.9)

and F from (9.13a):

CT= (T I TP T

4n N Z nOTI2  (9.17a)
p n= -c n

Ga= 2GL 14 I 4TrN

a L 2  v L2 L17b)

F= = .91p 2N T 2

F =  91 (9.17c)

2

Here the Fourier transform versions of (9.2) and (9.9) for C and G

T a

have been used and the summation from - to + f has been replaced bycon

twice the summation from 0 to +o assuming hat- m Also Gha o
multiplied by 2 to account for the bidirectionality. The numerical i

value of F was computed using the potential distribution for a SAW IDT

with alternating polarities and with equal electrodes and gaps..

It is evident that while the capacitance arises from all the

Fourier components of the transducer distribution function q5T ,the conduc-

tance comes only from the Fourier component that matches the acoustic

wave being excited. The Q is thus minimized when 0T contains only one

Fourier component matching the acoustic wave, that is, when T= L

The equations derived in this chapter are applied readily to

line waves as well. However, for any given transducer we have to obtain
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T
the transductr distribution fupction by solving rb elcurostatic

Poisson's equation with the appropriata surface boundary conditions. The

line wave distribution aL is obtained from the field equations as dis-

L
cussed in. Chapter 3. Fig. 3.4 shows ) for the particular wedge used

in our experiments.

T
The problem of obtaining z for the line wave transducers is a

4 three dimensional electrostatic field problem and unfortunately this has

not been solved for the single phase or the triangular transducer discussed

in Chapter 3. However, remembering that the optimum transducer is one with

L T' =  ,we can gaet a feel for the relative Q's of different types of trans-

ducers.

T
The transducer distribution 'T should match the line wave dis-

tribution L both along the propagation direction and in the transverse

direction. interdigital transducers provide a fairly good match for the

propagation direction as shown by the high F computed for SAW for an

interdigital transducer. However, it is uniform in the transverse direction

and is not a good match for the LAW distribution (Fig. 3.4). in fact,

the F computed for" LAW for a I% wide iDT is - .15 showing rather poor

efficiency. The sawtooth transducer is similar to the !DT but the funda-

mental Fourier compoaent is weighted across the beam and can be matched

to the LkW distribution to provide a higher F. However, no quantitative

calculation has been carried out.

The single phase transducer is clearly the weakest because it

provides a poor match even in the propagation direction. Since there are

no negative electrodes between the positive electrodes the potential is

not forced to alternate alon- the propagation path so that the fundamental

Fourier component is r.ther small.
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The condition for optimum coupling T = L suggests that the

transducer in Fig. 9.2 should be fairly efficient. However, it is

difficult to implement because of the cross-overs needed to make con-

nections to the electrodes.

L

1
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Figure 9.2: Ak conceptual I.A~ transducer for good coupling
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Chapter 10: The Superposition Principle as Applied to Transducer Analysis
and Design

In this chapter we consider an interdigital transducer consisting

of a periodic array of electrodes with a specified voltage sequence (Fig.

10.1). As mentioned in the last chapter, the generation of surface waves

by the transducers is computed in two steps. First, the charge distri-

bution on the electrodes is determined assuming the substrate to be a pure

$ dielectric. The calculated charge distribution is then used in Eq.

(5.23) to determine the waves generated in either direction. Here we will

describe an application of the superposition principle that simplifies the

first step considerably for periodic SAW interdigital transducers. This

first step of the problem requires us to solve the electrostatic equations

so that the charge is zero in the gaps and the electrical potential has

the specified values on the electrodes. This is a non-trivial problem

especially for arbitrary electrode voltages. Moreover, the problem has

to be solved anew for each new set of voltages.

In this chapter we will show that the charge distribution in a

periodic transducer is written as a convolution product of the electrode

voltages with a basic charge distribution that depends only on the elec-

trode metalization ratio (=a/p), so that it is not necessary to solve

the field equations for each new set of voltages.

Consider the transducer in Fig. 10.2 (a) with 1V applied to the

central electrode and all other electrodes grounded. The charge distri-

bution in this array a(x) (Fig. 10.2 (b)) is the basic charge distribution

mentioned earlier. To show this let us consider the three cases shown in

Fig. 10.3. In Fig. 10.3 (a) the charge distribution is clearly V0o(x). In

Fig. 10.3 (b) the charge distribution is VlI'(x-p). Now, in Fig. 10.3 (c) the
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the charge distribution is obtained by superposing the charge distributions

in Figs. 10.3 (a) and 10.3 (b) giving V0 a(x) + V1a(x-p). This is true be-

cause the field equations are linear and the sum of two solutions is also a

valid solution. The only question is whether it has the correct boundary

values. It is easy to check that it does.

Similarly for an arbitrary sequence of voltages as in Fig. 10.1

we may write the charge distribution Q(x) as,

Q(x) = E v a(x - np) (10.1a)
n n

= V(x) * a(x) (l0.1b)

where V(x) = E V 8 (x - np) (10.Ic)
n n

and the * denotes convolution. It will be noted that this argument is

exact only for an infinite array of electrodes with all electrodes occur-

ring periodically. The end effects are easily accounted for by adding a

few grounded electrodes at each end since the effects of neighboring elec-

trodes are negligible beyond the third nearest neighbor. However, if any

electrodes are withdrawn from the array (as is true for a few practical

transducers) then this analysis is not applicable in its present form.

It can be shown from the perturbation equation (5.23) that the

total surface wave amplitude, AS at a frequency w generated by a distri-

buted charge distribution Q(x) proportional to the Fourier transform of

the charge distribution at a spatial harmonic equal to the wavenumber of

the surface wave. Thus,

A (w) Q(k =w/v ) (10.2)

where Q(k) is the Fourier transform of Q(x)

and vS = surface wave velocity.



68

From (10.1) we then have,

A (W) V(k = u/v S ) .aik = - (10.3)
S S \ v/

where V(k) and a(k) are the Fourier transforms of V(x) and j(x). The

overall response thus splits into the product of a.n array factor V(k) with

an element factor a(k). The array factor is obtained from a simple Fourier

transformation of the electrode voltages while the element factor is ob-

tained once and for all from field theory. Fig. 10.4 shows the element

factor 'K/2 uk plotted against k for various values of the metallization

ratio. These plots were obtained from field theory IlSI.

This concept has been applied to various types of transducers

and the details are described in [151, [16], and [17]. Presently the

technique is being extended to non-periodic transducers [291. The

principle is also being incorporated into a general scatter-matrix

characterization of transducers [28].

iL
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